

Magnus-S3 M3E Passive Sensor IC

UHF RFID Temperature Sensor IC

Introduction

The Magnus®-S3 M3E Sensor IC (Integrated Circuit) employs Smart Passive Sensing™ technology to enable a new class of maintenance-free and battery-free sensors. The Magnus-S3 M3E can be configured for low-cost sensors that monitor temperature.

A fully compliant sensor is built by combining the Magnus-S3 M3E IC with a low-cost foil antenna. The Magnus-S3 M3E IC can be read by EPC class 1 gen 2 v2.0.1 and ISO/IEC 18000-6C compliant readers.

Features

- Passive wireless sensor IC
- On-chip temperature sensor
- On-chip RSSI sensor
- Battery-free wireless operation
- Worldwide UHF from 860 to 960 MHz
- Meets EPCglobal™ Gen2 (v. 2.0.1)

- Meets ISO/IEC 18000-6C
- User-accessible memory
 - 64-bit unique Tag ID (read-only)
 - o 128-bit EPC
 - 128-bit user memory
- Extended temperature range -40 °C to +125 °C

Contents

1. Functional Description	3
1.1. Wireless Communication Standard	3
2. AZN305-EX Performance Data	4
3. On-chip RSSI	7
3.1. RSSI CODE	7
3.2. RSSI Requests	7
4. Temperature Sensing	9
4.1. Temperature Requests	9
4.2. Reading the Temperature Code	9
4.3. Temperature Calibration Data	9
5. Magnus-S3 M3E Memory Map	10
5.1. EPC Memory and Control	10
5.2. Tag Identification (TID) Memory	10
5.3. Kill Password	10
6. Physical Dimensions	13
6.1. Die Dimensions	13
6.2. Pad Descriptions	13
6.3. Magnus-S3 M3E QFN Package Dimensions	16
7. References	18
8. Revision History	18
9. Ordering Information	19

1. Functional Description

The Magnus®-S3 M3E Sensor integrated circuit employs Smart Passive SensingTM technology, enabling a new class of maintenance-free and battery-free sensors.

The Magnus-S3 M3E IC incorporates two sensors:

- 1) An on-chip Received Signal Strength Indicator RSSI monitor indicates the amount of RF power reaching the chip. The generated RSSI CODE can be used to filter large populations of sensors. It also allows the wireless reader to manage its output power for optimum sensor performance.
- 2) The on-chip temperature sensor generates a TEMPERATURE CODE data value proportional to the temperature. The IC can be calibrated to provide precise temperature Measurements.

These two sensor values are retrieved by reading memory locations within the IC.

The Magnus-S3 M3E includes 128 bits of user memory with user-writeable EPC formats up to 128-bits in length. Magnus-S3 M3E also includes a 32-bit kill password, and a 64-bit factory programmed Tag ID (TID). The TID value is unique for each individual RFMicron device and cannot be modified.

1.1. Wireless Communication Standard

Magnus®-S3 M3E fully supports all parts of the EPCglobal Class-1 Generation-2 RAIN/UHF protocol for communications at 860 MHz to 960 MHz, Version 2.0.1, including all mandatory commands.

2. AZN305-EX Performance Data

Wireless Sensor IC for passive temperature, moisture and proximity sensors.

Table 1: Absolute Maximum Ratings¹

PARAMETER	Min	Max	Units	Notes
Storage temperature	-40	125	°C	
Assembly temperature		150	°C	1-Minute duration
Received RF Power		+10	dBm	800-1000 MHz
ESD immunity		1500	٧	Human Body Model (HBM)

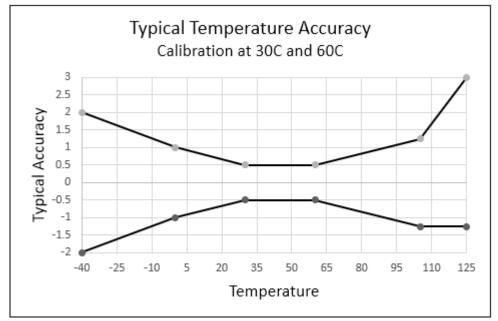
NOTES:

Table 2: Recommended Operating Conditions

PARAMETER	Min	Max	Units	Notes
Operating temperature	-40	+85	°C	Can Support shorter excursions to 125 °C
Carrier Frequency	860	960	MHz	

^{1.} Absolute maximums are limiting values of operating and environmental conditions, which should not be exceeded under the worst possible conditions. Operation at or near the absolute maximum ratings is not recommended and may damage or reduce device life.

Table 3: Performance Characteristics


PARAMETER	Min	Тур	Max	Units	Notes		
Read sensitivity		-18.7		dBm	1, 2, 3		
Write sensitivity		-14.4		dBm	1, 2, 3		
Data retention	10			years	4		
Write and erase endurance		10,000		cycles	4		
Equivalent Input resistance, Rp		3,960		ohms	3, 5		
Equivalent Input capacitance, Cp		0.8		pF	3, 5		
RSSI CODE range	0		31	codes			
Calibration temperature		30, 60		°C			
Temperature accuracy @ 30°C		±0.5		°C	6, Figure 1		
Codes per °C		7.5					
Compatible standards	EPC Gen2 v	, 2.0.1; ISO	18000-6C				
TID memory	96-bits						
EPC memory	160-bits su						
User memory	12-Words	12-Words					

NOTES:

- 1. DSB-ASK modulation with 90% modulation depth and 25 μs Tari used for reader-to-sensor communication.
- 2. Miller M=4 encoding with 256 kbps BLF used for sensor-to-reader communication. Ambient temperature: $25 \, ^{\circ}\text{C}$.
- Values apply to both Bumped Die and QFN IC Formats.
 -40 to +85 °C range for minimum Data Retention Life of 10 years. Sustained operation at higher temperatures is not recommended.
 At -18.7 dBm input power.
- 6. Assumes averaging 10 individual temperature code reads at Ta= 30 °C.

Figure 1 Magnus Typical Temperature Accuracy

3. On-chip RSSI

Magnus-S3 M3E incorporates on-chip RSSI (Received Signal Strength Indicator) circuitry that measures the incoming signal strength and converts it to a digital value. The RSSI CODE can be communicated to a reader and used for control purposes.

3.1. RSSI CODE

The RSSI Code is stored in the five bits DB_h-DF_h of the word D_h in the Reserved Memory Bank. The RSSI Code will be returned as the 5 LSBs when executing a standard READ command specifying word address D_h. Magnus-S3 M3E must first receive an On-Chip RSSI Request before the On-Chip RSSI CODE becomes available. If the chip does not receive an On-Chip RSSI Request, the On-Chip RSSI value will be 0 if it is read.

3.2. RSSI Requests

On-Chip RSSI Request allows the reader to specify that it wants to hear only from sensors that receive the desired signal strength. The requested signal strength range can be set for all power levels, or it can be narrowed to request a specific signal strength. In normal use the RSSI request range is narrowed to specify so that only a limited set of sensors respond to the command.

The User Memory Bank bit address DO_h is used as the Select command's Mask Pointer, and the RSSI Threshold values are encoded in the Select command's Mask field. The RSSI request is sent by the reader using a standard Gen 2 SELECT command. The 6-bits of On-Chip RSSI Threshold Value/Control are communicated as part of the Mask sent to the sensors.

Table 4 below from the Gen 2 version 2.0.1 spec shows the format of a SELECT command. To send an On-Chip RSSI Request, the reader issues a SELECT command with:

- MemBank set to 3_h (11_b)
- The On-Chip RSSI Threshold bit address (DOh) in the Pointer field
- Length set to 00001000b (the On-Chip RSSI request value consists of the lower 6 bits of an 8-bit Mask)
- The On-Chip RSSI request in the lower 6 bits of the Mask, consisting of a leading control bit followed by 5 bits for the On-Chip RSSI Code at which the reader wants to define the sensor response/no-response threshold.

If the control bit is set to 0, the SELECT will be considered matching when the RSSI CODE is less than or equal to the threshold value. If the control bit is 1, the SELECT will be considered matching when its RSSI CODE is greater than the threshold.

The RSSI value is internally generated when the Magnus-S3 M3E receives a SELECT command with the parameters described above. Whether the sensor responds for the rest of the inventory round depends on whether the SELECT matches the sensor.

Table 4: SELECT Command Specification

	Command	Target	Action	MemBank	Pointer	Length	Mask	Truncate	CRC-16
Number of bits	4	3	3	2	EBV	8	Variable	1	16
Description	1010	000: Inventoried (S0) 001: Inventoried (S1) 010: Inventoried (S2) 011: Inventoried (S3) 100: SL 101, 110, 111: RFU	See Gen 2 spec, Table 6.20	00: RFU 01: EPC 10: TID 11: User	Starting Mask Address	Mask Length (bits)	Mask value	0: Disable truncation 1: Enable truncation	

4. Temperature Sensing

Magnus-S3 M3E includes a precise temperature-sensing circuit. The circuit generates a TEMPERATURE CODE when it receives a Temperature Request. The TEMPERATURE CODE can then be retrieved using a standard UHF READ command. The TEMPERATURE CODE is a 12-bit number which can be converted into temperature reading.

4.1. Temperature Requests

The temperature-sensing circuit runs in response to a Temperature Request, which is a standard SELECT command with the parameters given below:

- 1. MemBank set to 3_h (11_b)
- 2. The Temperature Sensing Enable bit address (E0h) in the Pointer field
- 3. Length set to 0h
- 4. Mask field empty

The highest precision is achieved when the Temperature Request is followed by at least 2 ms of continuous wave output from the reader before any subsequent commands are sent to provide time to complete and store the TEMPERATURE CODE in the Reserved Memory.

4.2. Reading the Temperature Code

The TEMPERATURE CODE is a 12-bit value, stored in the least significant bits of word Eh in the Reserved Memory Bank, which can be read with a standard READ command. Higher TEMPERATURE CODE values correspond to higher temperatures. The TEMPERATURE CODE is converted to a precise temperature measurement with a linear mapping:

$$T = aC + b$$

T is the temperature in °C. C is the TEMPERATURE CODE read from Magnus-S3 M3E, and a and b are constants, which are custom to each chip. More details on temperature calibration are available in the RFMicron document AN002, "Reading Magnus-S Sensors".

4.3. Temperature Calibration Data

Magnus-S $\dot{3}$ M3E chips come with temperature calibration data stored in the User Memory Bank in addresses 8_h through B_h . This data is generated from a single-point calibration conducted on each chip during manufacturing. If greater precision and/or accuracy is desired, the user can recalibrate the chip. If the temperature sensor will not be used, this data can be safely overwritten. See RFMicron document

AN002, "Reading Magnus-S Sensors" for more information.

5. Magnus-S3 M3E Memory Map

The Magnus-S3 M3E memory map is shown in Table 6, where in addition to the usual Reserved, EPC, Tag Identification (TID) and User Memory Banks, the RSSI CODE, and the TEMPERATURE CODE are shown.

5.1. EPC Memory and Control

As required by the Gen-2 specification, EPC memory contains a 16-bit cyclic-redundancy check word (StoredCRC) at memory addresses 00_h to $0F_h$, the 16 protocol-control bits (StoredPC) at memory addresses 10_h to $1F_h$, and an EPC value beginning at address 20_h .

The protocol control fields include a 5-bit EPC length, a 1-bit user-memory indicator (UMI), a 1- bit extended protocol control indicator, and a 9- bit numbering system identifier (NSI).

On power-up, the IC calculates the StoredCRC over the stored PC bits and the EPC specified by the EPC length field in the StoredPC. For more details about the StoredPC field or the StoredCRC, see the Gen 2 specification.

The StoredCRC, StoredPC, and EPC are stored MSB first (i.e., the EPC's MSB is stored in location 20h).

5.2. Tag Identification (TID) Memory

The read-only TID memory contains the RFMicron-specific data detailed in Table 5. The RFMicron Mask Designer ID (MDID) is 824_h (bits 08_h to 13_h). The logic 1 in the most significant bit of the MDID, highlighted with a solid black border, indicates the presence of an extended TID consisting of a 16-bit header and a 48-bit serialization. The Magnus-S3 M3E model number is in bits 14_h to $1F_h$, highlighted by the dashed line. The shaded bit locations in TID row 00_h - $0F_h$ store the EPCglobalTM Class ID (E2_h).

5.3. Kill Password

The Kill Password is a 32-bit value stored in Reserve Memory 00_h to $1F_h$, MSB first. The default value is all zeroes. A reader can use a sensor kill password <u>once</u> to kill the sensor and render it silent after that. A sensor will not execute a kill operation if its Kill Password is all zeroes.

Table 5: Tag Identification (TID) Bit Mapping)

Memory Bank #	Bit Address							В	it nu	ımbe	er						
	50-5F _h		TID serial number [15:0]														
	40-4F _h						TID	seria	ıl nu	mbe	r [31	:16]					
	30-3F _h						TID	seria	ıl nu	mbe	r [47	:32]					
10	20-2F _h	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	10-1F _h	0	1	0	0	х	х	х	х	х	х	х	х	х	х	х	х
	00-0F _h	1	1	1	0	0	0	1	0	1	0	0	0	0	0	1	0

Table 6: Memory Map

Memory Bank	Bank Name	R/W	Bit Address	Description LSB MSB	Default	Comments	
		DEAD ONLY	E0-EF	Temperature Sensing Enable	N/A	See Sec. 4.1	
		READ ONLY	D0-DF	RSSI Threshold	N/A	See Sec. 3.2	
			B0-BF	Temperature Calibration Data	N/A		
			A0-AF	Temperature Calibration Data	N/A	See See 4.2	
			90-9F	Temperature Calibration Data	N/A	See Sec. 4.3	
			80-8F	Temperature Calibration Data	N/A		
11	USER		70-7F		0		
11	USER	READ/WRITE	60-6F		0		
		READ/WRITE	50-5F		0		
			40-4F		0		
			30-3F		0		
			20-2F		0		
			10-1F		0		
			00-0F		0		
			50-5F	TID[15:0]			
			40-4F	TID[31:16]			
10	TID	DEAD ONLY	30-3F	TID[47:32]			
10	TID	READ ONLY	20-2F	Extended TID Header		See Sec. 5.2	
			10-1F	Tag Model Number			
			00-0F	Manufacturer ID			
			90-9F	EPC#[15:0]	0		
			80-8F	EPC#[31:16]	0		
			70-7F	EPC#[47:32]	0		
			60-6F	EPC#[63:48]	0		
01	EPC	READ/WRITE	50-5F	EPC#[79:64]	0	See Sec. 5.1	
			40-4F	EPC#[95:80]	0		
			30-3F	EPC#[111:96]	0		
				EPC#[127:112]	0		
			10-1F	StoredPC[15:0]	0		

			00-0F	StoredCRC[15:0]	0	
			E0-EF	TEMPERATURE CODE	N/A	See Sec. 4.2
		READ ONLY	D0-DF	RSSI CODE	N/A	See Sec. 3.1
00	חבנבטעבט	DECEDVED				
00	RESERVED		30-3F	Reserved for future use	0	
		READ/WRITE	10-1F	KILL Password[15:0]	0	(aa (aa F 2
			00-0F	KILL Password[31:16]	0	See Sec. 5.3

6. Physical Dimensions

6.1. Die Dimensions

Table 7: Die Dimensions

Parameter	Dimension
Die Size	910 µm x 760 µm
Signal Bump Size	66 µm x 66 µm
Minimum Bump Spacing	344 μm
Scribe line width dimensions	X dimension: 86 μm; Y dimension: 80 μm

6.2. Pad Descriptions

Die Pictures are shown in Figure 2. Bumped die pad locations are shown in Figure 3. QFN dimensions are shown in Figure 4. Pad descriptions are provided in Table 8.

Table 8: Pad Descriptions

Pad	Description
RFN	Antenna connection
RFP	Antenna connection
NC	Not connected - pads are for mechanical support and planarity. NC pads should be shorted together but otherwise electrically isolated.

Figure 2: Die Pictures

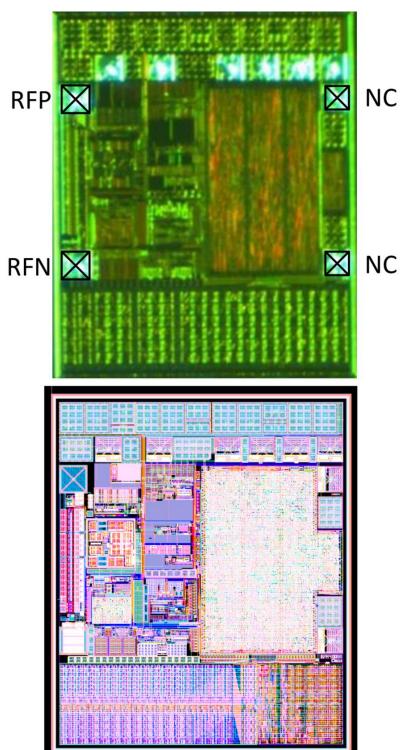
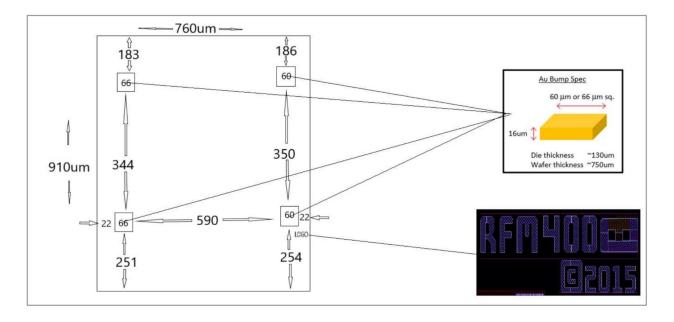
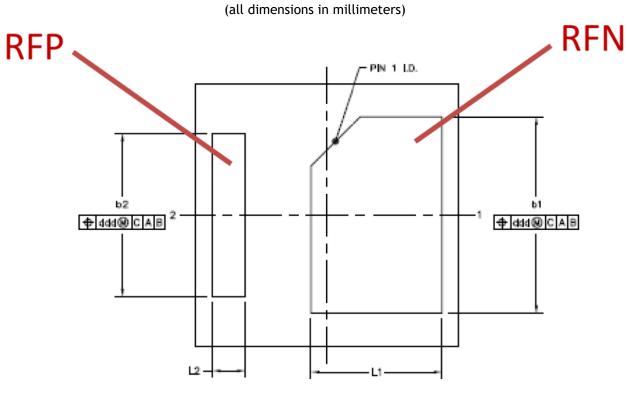
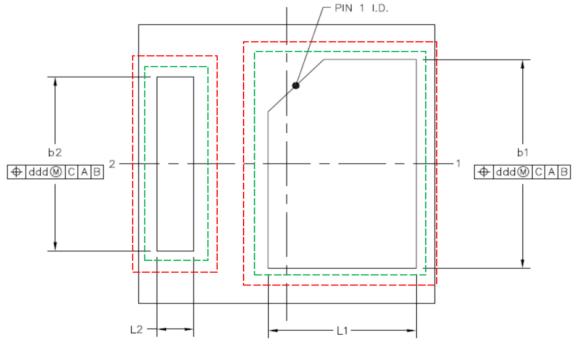



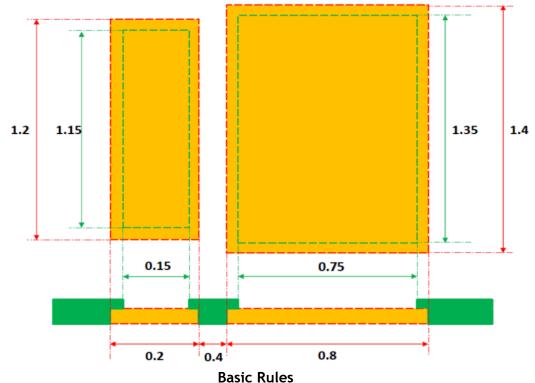
Figure 3: M3E Bumped Pad and Logo Information

The Bumped Pad is square in shape with either 60 or 66 µm on the side.


(all dimensions in microns; All dimensions are not to scale)

6.3. Magnus-S3 M3E QFN Package Dimensions


Figure 4: Magnus-S3 M3E QFN Dimensions


BOTTOM VIEW VIEW M-M

		SYMBOL	MIN	NOM	MAX
TOTAL THICKNESS		Α		0.75	
STAND OFF		A1	0	0.035	0.05
MOLD THICKNESS		A2		0.23	
L/F THICKNESS		А3		0.127 REF	
LEAD WIDTH		b1	1.15	1.2	1.25
LEAD WIDTH		b2	0.95	1	1.05
BODY SIZE	Χ	D	1.6 BSC		
BODY SIZE	Υ	Е		1.6 BSC	
LEAD LENGTH		L1	0.75	0.8	0.85
LEAD LENGTH		L2	0.15	0.2	0.25
PACKAGE EDGE TOLERANO	CE	aaa	0.1		
MOLD FLATNESS		bbb	0.1		
COPLANARITY		ссс		0.08	
LEAD OFFSET	•	ddd		0.1	

AXZWN

ALL DIMENSIONS IN mm

- Use 25 micron solder mask overlap of the pad
- 1. Width same as pad.
- 2. Length 200 microns longer than pad.
- 3. 25 micron soldermask overlap

7. References

[1] EPCglobal, "EPC™ Radio-Frequency Identity Protocols Generation-2 RAIN/UHF, Version 2.0.1", (November 2013).

8. Revision History

1.0	Initial release
1.1	Labeled the pins in Figure 4: Magnus-S3 M3E QFN Dimensions
1.2	Addition of Temperature plot. Instruction for NC pads.
1.3	Updated QFN thickness information and Minor proof editing.
1.4	Updated Logo and Formatting

9. Ordering Information

All variants include RSSI CODE support. Additional sensing functions, as well as packaging format, are indicated by the part number as shown below.

AZN305-EG	100 Bumped die in GelPak
AZN305-EW	Finished (Bumped, thinned to 130um, Sawn) Tested Wafer (8 inch)
AZN305-EQT	2-contact 1.6 x 1.6 mm QFN Package in Tape and Reel

©2018 RFMicron, Inc. d/b/a Axzon. All rights reserved. Reproduction in part or in whole is prohibited without prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. RFMicron, and RFMicron,Inc. as well as the product and service names mentioned herein are the registered trademarks of RFMicron,Inc. All other trademarks are the property of their respective owners. RFMicron, Austin Texas, USA.

www.Axzon.com

Datasheet DS006F12: Datasheet: AZN305-EX Magnus-S3 M3E Passive Sensor IC, Dec 2018. Patent www.Axzon.com/patents

©2021 Axzon, Inc. All rights reserved, Reproduction un part or in whole is prohibited without prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. This product is covered by U.S. patents 7586385, 8081043 and other Axzon's granted and pending patents. Visit the Axzon website (https://axzon.com/patents/) for latest patent information. Chameleon[™] and Magnus® are trademarks of Axzon, Inc. as well as the product and service names mentioned herein are registered trademarks of Axzon, Inc. All other trademarks are the property of their respective owners, Axzon, Austin Texas, USA.